Text Size AAA
 
 
Jun 10, 2014

Why the Barclays Downgrade of the Entire U.S. Electricity Sector Means an Upgrade for Consumers

 

Barclays recently downgraded the U.S. electricity sector. That’s right, the whole sector. It’s now listed as “underweight,” meaning that if you were to hold a full portfolio of bonds for the U.S. economy, you might want to be a bit light on U.S. electric utilities, as they might not keep up with the broader economic growth trends. Why? One answer is the disruptive threat of solar-plus-battery systems. From the Barclays report:

Over the next few years… we believe that a confluence of declining cost trends in distributed solar photovoltaic (PV) power generation and residential-scale power storage is likely to disrupt the status quo. Based on our analysis, the cost of solar + storage for residential consumers of electricity is already competitive with the price of utility grid power in Hawaii. Of the other major markets, California could follow in 2017, New York and Arizona in 2018, and many other states soon after.

In the 100+ year history of the electric utility industry, there has never before been a truly cost-competitive substitute available for grid power. We believe that solar + storage could reconfigure the organization and regulation of the electric power business over the coming decade.

If that language sounds familiar, it’s because Barclays’ logic is very similar to that of our recent report, The Economics of Grid Defection, in which we forecasted the declining costs of solar plus storage and the time—coming soon—when those systems could reach parity with grid-sourced retail price electricity in a growing number of markets, including Hawaii, California, and New York. In fact, the Barclays report cites RMI as a key source in several of its analyses that lead to this conclusion.

Barclays believes we’re entering a post-monopoly world in which distributed energy resources will take a place alongside large-scale central generation as a critical energy resource and a widely available and affordable customer option. In a surprisingly strong prediction for analysts, Barclays views this transition as inevitable: “Whatever roadblocks utilities try to toss up—and there's already been plenty of tossing in the states most vulnerable to solar, further evidence of the pressures they're facing—it's already too late.”

If you’re a utility, or an investor who’s got money in utilities, that’s some ominous language. Admittedly, a downgrade suggests two possible outcomes in the near future: 1) analysts tend to move in herds, so expect more news on the U.S. electric sector soon, and 2) capital is likely to get a bit more expensive for utilities, as millions of dollars shift out of the sector. 

It’s not all bad news. As we discussed recently in “Caveat Investor,” this should ultimately lead to a stronger, more resilient power sector with stronger overall valuations, but the transition is likely to be volatile. The Barclays report suggests we’re about to enter that volatile transition phase.

So, what are the major trends we can learn from this, and what does a utility downgrade mean for the future of distributed renewables?

1) Distributed energy is hitting the mainstream. Historically, it’s renewables’ creditworthiness that has been challenged (while utilities have been considered rock solid), but now this trend appears to be reversing. We’ve seen declining costs of capital in solar (as recent securitizations demonstrate), new financial instruments emerging for related technologies, and lower costs overall. Despite this progress, there is still a large gap between the market acceptance of renewables and the market acceptance of central, fossil-fueled generation. The recent downgrade suggests that people are starting to take distributed renewables seriously, and that utilities and renewables are entering a period of equal (or at least comparable) market strength.

2) Issuing new bonds for thermal fossil generation will become more expensive. While many people focus on the construction costs of new assets (central and distributed generation alike), it’s more often the cost of capital that determines project viability. Traditionally, utilities have almost always been the lowest-cost provider of new energy resources, and part of this advantage has rested on ready access to and favorable terms from the bond market. If that advantage is eroding, then expect new players to be able to compete for providing the nation’s energy, including providers of much smaller, distributed generation.

3) Distributed storage, when combined with already mature trends in generation and energy efficiency, compounds the disruptive threat of consumer-scale investments in energy. Many people have worried that declining demand (through energy efficiency) and distributed generation are putting enormous stress on the traditional business model for investments in central generation. That has not changed at all. So why does the emergence of storage, something that doesn’t reduce consumption or increase generation, suddenly give the markets concern? Simply put, the addition of storage gives customers the option to entirely disengage from their relationship with the utility. While most customers won’t choose to leave, and for good reasons, the threat of grid defection creates consumer leverage that will slow recent upward trends in utility rates out of competitive necessity.

4) These trends are likely to accelerate. As capital shifts from central to distributed generation, this just improves the economics of distributed resources even further, through scale benefits as well as lower cost of capital. Few people would say that we’ve even come close to market saturation for any customer segment for renewables and efficiency. As the traditional electric sector becomes a more challenging place to park capital (or even just a less certain place), more investors will start to notice that investments in distributed resources have similar risk-reward profiles, and this movement of capital will be self-reinforcing.

Barclays took a fairly surprising stance for an industry not traditionally known for looking years into the future. That’s a great sign for the markets, which need to start responding to global, long-term trends. And while the Barclays report isn’t likely to move markets in the next 6 or 12 months, it does signal an important shift under way—distributed generation is likely to be an affordable and accessible choice for more and more customers alongside traditional utility-provided electricity. More options means more competition and increased relevance of the customer. And that’s an upgrade for users of electricity everywhere.

pcruciatti / Shutterstock.com

Join the Discussion


Showing 1-1 of 1 comments

June 13, 2014

Distributed Storage -
At least 30 per cent of all existing and proposed wind farm sites in the Rocky Mountain basins and Great Plains have within their foot print sufficient topography and water sources (ground and/or surface) to support pairs of closed loop pumped hydro earthen berm lagoons of 6 to 8 meter operating ranges. Such lagoons with bentonite sealed water contact surfaces are commonly used for wastewater treatment, mining operations, aquaculture, etc.

At most locations upper and lower lagoons can be closer to each other than 1 km, with all arbitraged power being put into the grid on the wind farm system when the wind is not sufficient to meet peak value/ demand and the upper pool is fully charged for such an opportunity. Closed loop lagoon systems are very low net users of water, mainly by evaporation; leakage returns to the aquifer below the lagoon for recovery by the wells (if necessary) to charge the lagoons.

The size of the lagoons would be determined by matching surplus wind with peak electricity values when the wind is not blowing. There is no less expensive/efficient (75%+ round trip efficiency) means of storage of electrical charge on a grid scale than closed loop pumped hydro. A typical 120 MW nameplate capacity wind farm site in Texas has been investigated.

PAGE: 1